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IGNITION OF A REACTIVE MATERIAL BY HOT GASES

M. Kindeldn and A. Liidn

ABSTRACT

Am asymptotic analysis is developed, describing
ignition of a reactive so0lid suddenly exposed to hot
gases. It is found that in the lim%t of high activation
energy of the Arrhenius exothermic reaction, the chemical
heat release occurs in a thin diffusive-féactive layer

near the surface. The solution for this inner layer is

then matched to the solution for the outer transient-
diffusive region. An explicit formula for the ignition

time is obtained.
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1. INTRODUCTION

Several theoretical analyses of the ignition mech-
anism of a reactive solid have been developed in the
past, (see review by Merzhanov and Aversonl). Recently,
asymptotic techniques - have been successfully applied
to describe ignition under different heating méchanisms.
Lifian & Williams analyzed ignition of a ‘reactive solid
by a constant radiant energy flux absorbed at the sur-
face2 or in depth3 . Bush & Williams4 studied the influ-
ence of heat losses by conduction to the ambient gas
on the radiant ignition process. Williams and NiiookaS
studied ignition by forced convective heating or new-
tonian heating, and Lifian and William56 have recently

completed the analysis of ignition by a hot plate (sur-

face temperature constant).

In the present study we analyze the ignition proc-
ess of a reactive solid by conductive heating from a
hot ambient gas, so as to complete our understandiné
of ignition of a reactive solid under all the main
types of heating mechanisms. The analysis is also aé-
plicable to ignition of a reactive solid by a hot body
when the thermal responsivities of both materials are

of the same order.
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In addition, this study is a further step on our
analysis of ignition of a condensed material by hot
gases, with different locations of the exothermic reac-
tion. In reference (8) we assumed an heterogeneous
reaction occuring at the surface between the condensed
fuel and the ambient oxidizer. To analyze ignition by
a gas phase reaction, it is necessary to analyze first
the gasification process that produces gaéeous fuel
to react with the ambient oxidizer. We have recently
analyzd&7this gasification process and at the present
time we are using the temperature and mass fraction
profiles resulting from this analysis to study gas phase

ignition.

These analyses have been developed under similar
assumptions, and differ only on the location of the
exothermic reaction. It will now be possible to use
exﬁerimental results in trying to ascertain the location
of the reaction producing ignition for a given material

under some given conditions,

2. FORMULATION

We assume that no gasification of the solid occurs

during the ignition transient. Under assumptions such
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as those used in reference (8), the energy conservation

equations In the solid and gas-phases, become

e ved o B
3t  0E? P T{I+e(T, /T0)}
ik (1)
36 320
3—& PRGN
T 2
}
2 (2)
= Where the second term in the right hand side of

equation (1) represents the effect of an exothermic

distributed reaction of the Arrhenius type.

The boundary and initial conditions are

96
9E|s 3E |s (3)

9(1,0) o eg('r,o) ’ 9(0,5) el e(Ts“’) = T

0,(0,8) = 6 (1,®) = 1 )

s T o S

b £

where all symbols are defined in the nomenclature.
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For small values of tv the effects of the heat
release can be neglected so that the temperature

profiles take their inert values:

1g = ~Op/T = erf (£/2/7) : (5)

The analysis that follows is based on the assumﬁtion
that the nondimensional activation energy B/I' is a large
parameter. We consider I' to be of order unity, although
the results are also valid when I' is small. Since B/T
is large, small increments of order I'/B in the nondimensional

temperature 6, above its inert value 6 produce changes

I°
in the reaction rate by a factor e, and these small
increments are sufficient to ﬁroduce a thermal runaway
in surface temperature at a finite ignition time Tign'
We anticipate that the time T required to ﬁroduce these
increments is of order unity and therefore Tign is of

order unity.

From equation (5) it is observed that the inert
temperature in the condensed phase decreases towards
the interior, so éhat the exothermic reaction only occurs
in a.small layer near the surface where BE/TVT is of

order unity. Thus, two different regions exist in the




zondensed phase: an inner layer with characteristic
space dimension z=Bf, in which the reaction takes place,
and an outer region with characteristic space dimension £.

To analyze these regions, we use the following expansions

Innqr:
Tz r P (2 rz3 :
0= -~ + (7)x, +G&G)x, + —mmMm + ... (6)
Y7t B 71 "TB " "2 19p3:/at
Outer:
o= -T erf (—5—)+—g——xl+... | (7)
2Vt
Gas phase:
iy
0w epf (Bas) F ot g @, (8)
g 2/ B8 81

The variables Xps Xp are functions of z and 1 and the

variables X1 and xgl are functions of £ and t.

Introducing these expansions in equations (1)
and (2), expanding and collecting like powers of B8,

the following equations are obtained

azx
.o . (9
922
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32x2
r2———=— = -exp {x;-2z//71} (10)
922
3K, a%x,
ax g2 (11)
X 2
3
g1 3%x,
N0 g . (i2j

From the boundary and initial conditions (3) and

(4) the féllowing conditions are obtained

X X X

1l o - B S 5
3z |s 3z s Y3 s : (13)
XI(T’0)=Xg1(TQO) ’ X1(T.”)=xgl(1,°)=0 (14)
xl(oxz)=xz(0:z)=x1(O:E)=Xgl(osg)go (15)

Equations (9)-(12), can be integrated with

conditions (13)-(15) to give

X (152) = x;4(7) (16)

|
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dx, - dx, PIs L1 S b F;)_ Vnrt o a7 g
dz dz |s r2 B ANy g  BETRE r2 o i T L
LA b 2
1 e s 2P {~£2/4(1-1")} :
X1= ~ dt”
L Yr-1" (18)
0
T oy
1 ag S X 2 - -
X = = exp {~£%/4(7t-17) }dx (19)
g1 '3 /t-1"
0
From equations (16) and (17) the following matching
conditions with the solution for the outer zone are
derived
X1(t,0)=x; (20)
9Xy 9% 9%
2 2 VmT
9E |s A 3z o - 3z |s T =P (xls) (21)
From equations (18), (19) and using equations
(13), (14), (21), the value of the surface temperature
deviation from its inert value is found to satisfy the
integral equatioms
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T
3% 5 -
2 YT -
1 r B T T A T T >
X1g™ " dr (22)
vm J V-1~
0
1 9z |s - '
¥ - dr (23)
s s T

0
Combining these equations to eliminate
8x2/32‘s and defining a new variable o=t/{I(1+r)}

the following integral equation for X1s is derived
) ‘ 0 - -
Ai g™ it (xls)dc (24)

Equation (24) has been numerically integrated
by a procedure paralleling the one used in reference (8).
The results of this integration are shown in figure (1).
Runaway in surface temperature is found to occur at
a finite ignition time cign=0.393 . In dimensional
variables the ignition time is given by

e(T__=T.) I'(l+r)
= 89 1
,=0.393 AQ

exp (E/RT

t ) (25)

ig J

where Tj is the jump temperature, given by

T
To+(Tgo-To) 14T (26)

1

TS —— s SR — S —— v T (T W 0 g (e e e
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when the thermal :responsivities are constant. Since

the ignition time is strongly depzndent on Tj the value
of Tj should be correctly computed taking into account
the temperature dependence of the thermal responsivities

as was done in reference (8).
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NOMENCLATURE

A Pre-exponential factor

c Specific heat at constant pressure
E Activation Energy

Q Heat released by the reaction per unit mass of reactant
R Universal gas constant

T Temperature

t Time

X Space coordinate in the condensed phase

z Stretched space coordinate z=Rg

B Dimensionless activation energy B-;E(Tj—To)/RT2

i
I' Ratio of thermal responsivities P=/(plc)8/(akc)

0 Dimensionless temperature 0=(T-Tj)/(T80—Tj)

A Thermal conductivity

£ Dimensionless space coordinate:

s T———
i

R L RRR

SRp———

W DA "

T A TN T L A A

Condensed phase &= -x/ﬁAQexp(—E/RTj)/{A(Tgo-Tj)} i

:

= ¢/ “E/R 2. c(T. ~T,)}

Gaseyus phase £= ¥ QAcgexp( E/ Tj)/{ag 8c( & j) 4

¢ Density %
o Reduced time o=t/{T(1+¥)} :
: |

T Dimensionless time t-tAQexp(-E/RTj)/{c(Tgo-Tj)} §
o e e - - i R ¥

1
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X Reduced temfetature defined in Eq(7)

X Reduced temperature defined in Eqs(6) and (8)
x

Y Mass coordinate Y-Io psdx

SUBSCRIPTS

Gas

Inert

e = 0

Jumé value
8 Surface
"o Initial
1 First order ﬁerturbation

2 Second order ﬁerturbation
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Fig.1.- Surface temperature ¥, = hsmlepvm\wem as a function of the nondimensional time o.
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